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OPTIMAL STRUCTURAL DESIGN FOR GIVEN
DYNAMIC DEFLECTION*

LARRY JAY ICERMANt

Department of the Aerospace and Mechanical Engineering Sciences
University of California, San Diego, La Jolla, California

Abstract-This paper is concerned with optimal design of structures of various types tha t are excited to harmonic
vibrations by a single load, the intensity of which varies harmonically with time. Amplitude and frequency of
this load are prescribed as well as the "dynamic response" of the structure, which is defined as the virtual work
of the load amplitude on the displacement amplitude ofits point ofapplication. Subject to this "design constraint"
the structure is to use the smallest possible amount of a given structural material. Necessary and sufficient opti­
mality conditions are given for rods and beams with continuously varying or segmentwise constant cross sections,
and for trusses where all masses are lumped at the joints. Examples are presented, which illustrate the possible
saving in structural weight.

1. INTRODUCTION

THE general problem of minimum-weight design of a structure involves specifications of
(I) the purpose (or purposes) of the structure, (2) the design constraint (or constraints),
(3) the type of the desired structure, and, possibly, (4) its general shape. Typical examples
in these categories are: (1) transmission of given loads to given foundations, or support of
given masses; (2) upper bounds for deflections ofspecified points or for maximum deflection,
or lower bounds for buckling load or fundamental natural frequency; (3) rod, truss, beam,
arch, plate, or shell; (4) shape of centerline of arch or median surface of shell.

The present paper deals with single-purpose structures that have to transmit a load of
harmonically varying intensity to given points of support. The design constraint sets an
upper bound on the "dynamic response" which is here defined as the virtual work of the
given amplitude of the load on the amplitude of the deflection of its point of application.
Minimum-weight design of rods, beams, and truSses is discussed.

There is a substantial body ofliterature on optimal structural design; but this particular
design constraint, though of considerable practical importance, does not seem to have
been treated. The related design constraint, which imposes an upper bound on the static
deflection under a' given load, has been discussed by Barnett [1], and Haug and Kirmser [2].
Another related constraint, which sets a lower bound on the fundamental natural frequency,
has been treated by Niordson [3], Turner [4], Taylor [5], Zarghamee [6], and Sheu [7].

The conventional approach to problems of optimal structural design is through the
classical calculus of variations, which readily furnishes a necessary optimality condition.
The arguments establishing the sufficiency of this condition, if it is indeed sufficient, may be
rather involved. In the present paper a new method of establishing optimality criteria is
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used that has been developed in recent papers by Prager and Taylor [8], and Prager and
Shield [9].

This method is applicable whenever there exists an extremum principle characterizing
the quantity whose value is prescribed or bounded by design constraints. This procedure
consists of two parts: the integration of a nonlinear differential equation for the displace­
ment field of the optimal structure, and the determination of the optimal specific stiffness
from the linear differential equation of motion and the already obtained displacement field.

Sections 2 and 3 deal with optimal design of rods for given dynamic response. Rods of
continuously varying or segmentwise constant cross section are discussed. Section 4 is
concerned with optimal design of beams for given dynamic response. Here only beams of
continuously varying cross section are considered. Section 5, finally treats optimal design
of a truss for given dynamic response when the layout of the bars of the truss is given and
all masses are lumped at the joints.

2. ROD OF CONTINUOUSLY VARYING CROSS SECTION

Figure 1 shows a rod with continuously varying cross section that is fixed at one end
(x = 0) and subjected to the axial load P cos wt at the other end (x = I). Both the amplitude

1

J
Pcos Q,lt

FIG. I. Rod of continuously varying cross section.

P and the frequency ware given, and w is to be smaller than the fundamental naturalfrequency
WI of the rod. Writing the axial displacement as u(x) cos wt, we define the dynamic response
of the rod to the given load as Pu(l). As has been mentioned, the method of Prager and
Taylor [8] presupposes that the design constraint, that is the required value of Pu(l), be
characterized by an extremum principle. Such a principle will now be established.

The differential equation of motion is [10]

[EA(x)u'(x)]' +w2 pA(x)u(x) = 0, (2.1)

where E is Young's modulus, p is the density, and a prime denotes differentiation with
respect to x. The boundary conditions are

at x = 0:

at x = I:

u(O) = 0,

EA(l)u'(l) = P.
(2.2)
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(2.3)

(2.4)

(2.6)

According to Rayleigh's principle, the fundamental natural frequency Wl of the rod is
given by

Z _ • {f~ EA(x)u'z(x) dX}
Wl - mm f~ pA(x)uZ(x) dx

over all kinematically admissible u(x). A continuous function u(x) in this problem is called
kinematically admissible if it is twice differentiable with respect to x and satisfies the bound­
ary condition u(O) = 0; it need not, however, fulfill any boundary condition at x = 1.

Since Wl is assumed to exceed w, it follows from (2.3) that the functional

F[u(x)] = { EA(x)u'Z(x) dx - WZf~ pA(x)uZ(x) dx

is positive definite. For the actual displacement field u(x) and any kinematically admissible
displacement field u(x), we therefore have

f~ EA(x)[u'(x)-u'(x)F dx-wz{PA(X)[U(X)-U(XW dx ~ O. (2.5)

Expansion ofthe squared terms and subtraction of2J~ EA(x)u'Z(x) dx - 2wzJ~ pA(x)uZ(x) dx
from both sides of the resulting inequality yields

{ EAu'z dx-wz{PAUZdx-2 { EAu'ji' dx+2wz{PAUU dx

~ {EAU'Z dx-wz{PAUZdx-2 {EAU'Z dx+2wz{PAUZdx.

Using integration by parts in addition to the differential equation of motion (2.1) and the
boundary conditions (2.2), we finally obtain the following minimum principle:

LEA(x)u'Z(x)dx-wZLpA(x)uZ(x)dx-2Pu(l)

~ {EA(X)U'Z(X) dx - WZ{PA(X)UZ(X) dx -2Pu(l) = - Pu(l).

(2.7)

(2.8)

Note that this minimum principle reduces to the well-known principle of minimum
potential energy if w = 0, which corresponds to static loading. Note also that the dynamic
response Pu(l) is the minimum of the functional F[u(x)].

Now consider two designs A(x) and A(x) satisfying the design constraint of having the
same dynamic response. Accordingly

{ EA(x)u'Z(x) dx - WZf~ pA(x)uZ(x) dx

= {EA(X)U'Z(X)dX-WZ i~A(X)UZ(X)dX,
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where u(x) and u(x) are the displacement .fields of the designs A(x) and A(x). Combining
(2.7) and (2.8), we obtain

{ [A(x)- A(x)] [Eu'z(x)- pwzUZ(x)] dx 2 O. (2.9)

If the longitudinal displacement u(x) of the design A(x) satisfies

u'Z(x)-(WZjcz)UZ(x) = DZ, (2.10)

where c = ~(Ejp) is the speed of sound and D is a dimensionless constant, it follows from
(2.9) that the design A(x) cannot be heavier than any other design A(x) with the same dynamic
response. Hence (2.10) is a sufficient condition for minimum-weight design. The proof that
this is also a necessary condition for optimality will be postponed to the section on rods
with segmentwise constant cross section because the proofgiven there includes continuously
varying cross section as a special case.

The optimality condition (2.10) together with the kinematic boundary condition
u(O) = 0 furnishes

u(x) = (cjw)D sinh(wxjc). (2.11 )

The constant D is found by recalling that the value of u(l) is given by the design constraint.
Hence

(wjc)u(l)
D = sinh(mljc)"

Substitution of (2.11) into (2.1) yields

[cosh(wxjc)]A'(x)+2(wjc)[sinh(wxjc)]A(x) = O.

Solving (2.13) for A(x) we obtain

(2.12)

(2.13)

(2.14)A(
constant

x) = .
coshZ(mxjc)

The integration constant in (2.14) is determined from the second equation of (2.21 and the
minimum-weight design is found to be given by

(
P(cjw) cosh(mljc) sinh(wljc)

A xl = ------;:----­
Eu(l) coshZ(wxjc)

The volume of material required for this optimal design is

Vo = {A(X) dx = [P/Eu(l)](c/w)Z sinh2(wljc).

(2.15)

,(2.16)

If Vp denotes the volume of the prismatic rod that has the same dynamic response, one
readily finds that

Vo sinhZ(wlje)

Vp (wljc) tan(wl/c)"

This ratio as a function of wlje is shown in Fig. 2.

(2.17)
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FIG. 2. Volume ratio vs. length ratio.

3. RODS WITH SEGMENTWISE CONSTANT CROSS SECTION

Consider a rod consisting of segments with constant cross section. Let the axial stiffness
of the ith segment be EA i • The weight of the ith segment is proportional to its axial stiffness.
Thus, to minimize the weight of the rod is to minimize

(3.1)

where Ii is the length of the ith segment and the summation includes all segments. As before,
the rod is supposed to be fixed at the end x = 0 and subjected to an axial load P cos wt
at the end x = I. The axial displacement is written as u(x) cos wt, and the dynamic response
can be expressed as the minimum of the functional

(3.2)

(3.3)

where Xi specifies a typical cross section of the ith span, and the functions Ui(X;) for all seg­
ments represent a kinematically admissible field of axial displacements. The integrals in
(3.2) are taken over the ith span and the summation includes all spans. If several segments
are required to have the same axial stiffness, the term "span" refers to the sum of the lengths
of all segments with the same axial stiffness.

Now consider two designs A j and Ai that have the same dynamic response. It then
follows from (3.2) that

{f'i fli }
~ 0 EAiu;Z(Xi) dXj - w2

0 pAiUr(Xi) dXi

{f 'i f'i }~ '2 2 ~ 2
= ~ 0 EAiUi (xi)dxj-w 0 pAju j (x;) dXi ,



478 LARRY JAY ICERMAN

where Ui(Xi) and Ui(Xi) are the longitudinal displacement fields of the designs Ai and Ai,
respectively. Combining (3.3) and (2.7) we obtain

(3.4)

where

(3.5)

Note that the two terms in the bracket of (3.5) are respectively proportional to the ampli­
tudes of densities of strain energy and kinetic energy. From (3.4), (3.5), and (3.1) it follows
that the design Ai cannot be heavier than any other design Ai with the same dynamic
response if

''II = 112 = ... = lin' (3.6)

where n is the number of spans making up the rod. Hence (3.6) is a sufficient condition of
optimality.

In order to show that (3.6) is also necessary for optimality, consider first only two spans
for simplicity. If ~i is defined as

(i = 1,2) (3.7)

the condition that the design Ai cannot be lighter than the minimum-weight design Ai
becomes

On the other hand, it follows from (3.4) that

(i = 1,2).

(i = 1,2).

(3.8)

(3.9)

Now, ~ 1> ~2' and 111, 112 are interpreted as the components of vectors ~ and 11 with respect
to a rectangular Cartesian coordinate system. The optimal design AI' A2 , and 111, rt2 is
unknown but fixed. The other design AI, A2 is only subject to the constraint of having a
prescribed dynamic response. Accordingly, there exists a design AI, A 2 giving the vector ~

an arbitrarily chosen direction pointing from the origin into the half plane defined by
(3.8). The inequality (3.9) requires that the scalar product of anyone of these vectors ~

with the unknown vector 11 be non-negative. The vector 11 must therefore be directed along
the interior normal of the half plane (3.8) at the origin. This shows that the optimality
condition (3.6) is necessary as well as sufficient. This proof of necessity is patterned on that
given by Sheu and Prager [11J. Note that this proof of necessity is readily extended to the
case of n > 2 spans of constant cross section. In fact, extending the proof to the case when
n -+ 00 and all spans are infinitesimal, we readily establish the necessity of the optimality
condition (2.10).

As an example of a rod with segmentwise constant cross section consider the rod in
Fig. 3. The spans 11 and 12 are given and AI' A 2 are to be determined to minimize the weight
of the rod, which is to have given dynamic response. The differential equations of motion
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for the two segments are
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(i = 1,2), (3.10)

Pcos wt
FIG. 3. Rod with segmentwise constant cross section.

With the boundary and transition conditions

at XI = 0: UI(O) = 0,

at XI = II: UI(lI) = u2(0),

X2 = 0: EAlu~(lI) = EA2U2(0),

at X2 = 12 : EA 2U2(l2) = P,

one finds the displacement fields

UI(XI) = ex sin kx l ,

U2(X2) = a[(AdA2)coskl l sin kx2 +sin kl l coskx2],

(3.11)

(3.12)

(3.13)

where the constant a can be found by recalling that the dynamic tip displacement is to
have the given value u(l). Thus,

(3.14)

The optimality condition (3.6) now becomes

Using integration by parts on the terms f~ U~2(XI) dx I and f~ U22(X2) dX2 in addition to the
differential equations of motion (3.10), we find that the optimality condition (3.15) may be
written in the alternative form

(3.16)
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(3.17)

Substitution of (3.12) and (3.13) into (3.16) and use of appropriate trigonometric identities
yields the following quadratic equation for the optimal value of AIIA z :

(AllAz)Z[(cos 2kl l + 1) sin 2klz]+ (A d Az)[(cos 2klz - I) sin 2kll]

+(cos2kll-l)sin2klz-2sin2kll = O.

After obtaining the optimal value of AdA z' from (3.17), we determine Az by using the
fourth equation (3.11):

P[(A 1/A z)cos kl l sin klz +sin kl l cos klz]
A - (3.18)

z - u(l)E(wlc)[(AdAz)coskl l cos klz-sin kl l sinklz]

The volume of material that is used in the rod is given by

v= AIlI+Azlz .

In Fig. 4, the dimensionless structural volume

V* = VEu(l)I(Pf)

(3.19)

(3.20)

is plotted vs. ljll for the various values of (vElc. When the value of lj is at the choice of the
designer instead of being prescribed, it should be chosen to correspond to the abscissa of
the lowest point of the curve for the given value of wl/c. Note that, in the range 0·6 ~

wl/c ~ 1,4, the optimum value of ldl varies very little from about 0·500 to about 0·575.

wlle =1.2

wlle =1.4

95

wlle=I.O

wlle=O.6

wile =08

25 .50 1,11 __ 75

FIG. 4. Dimensionless volume vs. oJ//e.
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4. BEAM WITH CONTINUOUSLY VARYING BENDING STIFFNESS

Figure 5 shows a beam with continuously varying bending stiffness that is fixed at one
end (x = 0) and subjected to the transverse load P cos wt at the other end (x = l). Both
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FIG. 5. Beam with continuously varying bending stiffness.
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the amplitude P and the frequency ware given, and W is to be smaller than the fundamental
natural frequency WI of the beam. Denoting the transverse deflection by w(x) cos wt, we
define the dynamic response of the beam to the given load as Pw(l). The extremum principle
characterizing the design constraint, which prescribes the value of Pw(l), will be established
using the method of Section 2.

The differential equation of motion is [10]

[EI(x)w"(x)J" - w2m(x)w(x) = 0, (4.1)

where E is Young's modulus, m(x) is the mass distribution, I(x) is the moment of inertia,
and a prime denotes differentiation with respect to x. The boundary conditions are

at x = 0:

at x = I:

w(O) = 0,

EI(l)w"(l) = 0,

w'(O) = 0,

[EI(x)w"(X)]~~1 = P.
(4.2)

(4.3)

(4.4)

(4.5)

A continuous function w(x) in this problem is called kinematically admissible if it is
twice differentiable with respect to x and satisfies the boundary conditions w(O) = w'(O) = 0;
it need not, however, fulfill any boundary conditions at x = t.

Since WI is assumed to exceed w, it follows from Rayleigh's principle that the functional

F[w(x)] = {EI(X)W"2(X) dx - w2 { m(x)w2(x) dx

is positive definite. Proceeding essentially in the same manner as in Section 3, one readily
establishes the following minimum principle:

LEI(x)W"2(X) dx - w2Lm(x)w2(x) dx - 2Pw(l)

~ { EI(x)W"2(X) dx - w2Em(x)w2(x) dx - 2Pw(l) = - Pw(l).

Note that this minimum principle reduces to the well-known principle of minimum
potential energy if w = 0, which corresponds to static loading. Note also that the dynamic
response Pw(l) is the minimum of the functional F[w(x)].

Now, consider two designs I(x) and J(x) with the same dynamic response. Accordingly,

{ EI(x)w"2(x) dx - w2 { m(x)w2(x) dx

= {EJ(X)W"2(X) dx - w2 { m(x)w2(x) dx,
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where w(x) and w(x) are the deflections of the designs I(x) and l(x). The mass-stiffness
relation for sandwich beams with constant height of core has the form

m(x) = a2+b2EI(x),

where a and b are constants. Combining (4.4), (4.5), and (4.6), we obtain

{E[1(x)-I(X)][WIf2(x)-w2b2w2(x)] dx ~ O.

If the transverse deflection w(x) of the design I(x) satisfies

WIf2(X)_W2b2W2(X) = H 2,

(4.6)

(4.7)

(4.8)

where H is a constant, it follows from (4.7) that the design I(x) cannot be heavier than any
other design l(x) with the same dynamic response. Hence (4.8) is a sufficient condition for
minimum-weight design. The proof that this is also a necessary condition for optimality
follows the same lines as the necessity proof in Section 3.

In order to obtain the optimal design, the deflection of the optimal structure must be
found from (4.8). However the optimality condition (4.8) is a nonlinear differential equation,
which cannot be integrated in closed form. A numerical solution w1(x) must therefore be
obtained for an arbitrary value ofthe constant H, say H = 1, under the boundary conditions
in the first line of (4.2). Note that for any other value of H, we have

(4.9)

Since w'W) is not likely to vanish, it follows from the first equation in the second line of
(4.2) that

I(l) = O. (4.10)

Substituting (4.6) and (4.9) into (4.1), and using (4.8), one obtains the following differential
equation for I(x):

[El(x)~(1+w2b2wi{X))]1f - w2[a 2+b2EI(x)]Wl (x) = O. (4.11)

This must be integrated under the boundary conditions (4.21 (4.10), and

I'(l) = Pj[EHw'l(l)]. (4.12)

The last condition follows from the second equation in the second line of (4.2), (4.9), and
(4.10). The constant H can be found from the design constraint of a given dynamic response
Pw(l). Since P is given, we know w(l), and H is then obtained from (4.9).

5. OPTIMAL DESIGN OF TRUSSES

Consider a generalized truss that is loaded at the typical joint i by E; cos wt and carries
a mass M i at this joint. All masses are assumed to be lumped at the joints. The truss is to
be designed for minimum weight when the dynamic response LiEi' Ui is prescribed, the
center dot indicating the scalar product. In order to obtain the optimality condition, the
following function will be used in the same manner as (2.4):

F[u:!'] = -2
1

" " 0(. ·s· .A}. - w 2
" M·u:f< . U:!'-I ~ ~ lJ IJ IJ L l-l -I'

iii

(5.1)
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where ut cos wt is a kinematically admissible displacement vector of the joint i, and sij is
the specific axial stiffness of the bar connecting joints i and j (i.e. EAjlij where Aii and Iii
are the cross-sectional area and the length of the bar connecting joints i andj). The elonga­
tion amplitudes A.ij are defined by

(5.2)

where e-ij is a unit vector along the ray from joint i to jointj. The quantities IXij are defined by

(Xii = 0 if i and j are not connected by a bar,

if i and j are connected by a bar.

Displacements ut are kinematically admissible if they satisfy the kinematic constraints
imposed by the supports of the truss. Note that the factor t in the first term on the right­
hand side of (5.1) is needed, because the double sum involves each bar twice.

For the actual displacement amplitudes Ui, Uj and any kinematically admissible dis­
placement amplitudes ut, uj, we have

-4 " " IX· ·s· .{[u. - u· - (u:t' - u'!')] . e· .}2 - w 2
" M (u· - u:t') . (u· - u:t') > O. (5.3)~ ~ f....J 'J I.] -I -J -I -J -I) L. i\-I -I -I -I -

i j i

Expansion of the squared term and subtraction of

LI (XijSij[(Ui - u). e-ij]2 - 2w2 L MiUi .Ih
i j i

from both sides of the resulting inequality yields

t I I IXijSij[(Ut- uj) .e-ijF - w2 L Miut . ut
i j i

- I L IXijSij[(U; - u) . e-ij] [(ut- uj) . e-ij] +2w2 L MiUi . ut
i j i

~ t L I IXijSij[(Ui - u) .e-ijF - w 2 L MiUi . Ui
i j i

- L I IXijSij[(U; - Uj) . e-;Y +2w2 L Miu; . U;.
i j i

The principle of virtual work for this truss states that

t I I IXijSij[(U; - Uj) . e-ijF = w2 L Miu; . Ui + L I!i' Ui-
i j i i -

and

(5.4)

(5.5)

t L L (XijSiJ(Ui-Uj)' e-ij][(ut -uj). e-ij] = w2 L MiUi' ut + LEi' ut, (5.6)
i j i i

where Ei is the amplitude of the load acting at the joint i. Substitution of (5.5) and (5.6)
into (5.4) yields the following minimum principle:

t L L IXijSij[(Ut - uj). e-ijY - w2L M;ut . ut - 2 L E;. ut
i j i i

~ t I I (XijSij[(Ui - u). e-ijF - w2 L Miu; . U; - 2 L Ei . U;.
i j i i

(5.7)
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Consider now the design sij and an alternative design sij with the same dynamic re­
sponse. Since the minimum value of the functional (5.1) must be the same for the two
designs sij and Sij:

! LL (XjiJ(lli - llj) . eij]2 - w2L M;ll; . !:Ii = ! LL (Xi};JCG; - 11) . eij]2 - u? L M;G; . Ufo
i j i i j i

(5.8)

where Ufo uj and Ui' Uj are the displacement amplitudes of the designs "ij and sij' Combining
(5.7) and (5.8) we obtain

iLL (Xij[Sij-Sij] [(!:Ij-ll) . eijF 2': O.
i j

(5.9)

Note that the weight of the truss is proportional to LiLjAj)ij which is proportional to
L L sijlfj since sij = EAj1ij' If the displacements llj of the design Sjj satisfy

j j

(5.10)

where e is a dimensionless constant representing the absolute value of the unit extension
of the bar connecting the joints i and j, it then follows from (5.10) that the design sij cannot
be heavier than any other design Sjj with the same dynamic response. Hence (5.10) is a
sufficient condition for minimum-weight design of trusses. The proof that this is also a
necessary condition for optimality uses the same kind of argument as the necessity proof
in Section 3. Use of the optimality condition (5.10) is illustrated by the following two
examples.

Consider the truss in Fig. 6 supporting equal concentrated masses M at the joints 4, 6,
and 8 subjected to the load P cos wt applied at joint 8. The masses of the bars are assumed
to be negligible in comparison to the lumped masses M. The optimality condition (5.10)
requires that all bars experience a unit extension of the same absolute value e. The con­
vention of considering tension as positive and compression as negative will be adopted
for the bar forces. The expected signs of the bar forces are indicated in Fig. 6.

to--h -----01'1---h -~'~I'--h

FIG. 6. Truss A.

From the Williot diagram in Fig. 7, the joint displacements in multiples of eh are found
to be the following:
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Components

Rightward Downward
Joint horizontal vertical

I 0 0
2 0 0
3 -I 3
4 I 4
5 -2 9
6 2 10
7 -3 17
8 3 18

13ntZOrigin

1 I 24
I 23
I ,
I "I
I /' I

35f=t1~/ I
34 l

: ~46
I 45
I I
I ,

I " I
I ,,' I
I "I
I ,," I
I ," I
I ' I

/' 1

57i11~/ :
56 I

i --------~~:;
I , 1
I / 1
I /" I

I 'I ,,/
I ,,/
I ,,"
I ,
1 ,,"
I 'I /'
I /'17"

78~~---- 8~
Scale: 1/2 in= Eh

FIG. 7. Williot diagram for truss A.
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Assuming the magnitude of the load P cos wt to be 4Mw2eh, the bar forces and support
reactions are found by using the Maxwell diagram in Fig. 8. The forces and reactions in
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multiples of Mro2 eh are:

LARRY JAY ICERMAN

Axial force

-22
3

-22
31·1

-32
27

-54
45'3

-36
60
50·9

-90

Magnitude
0

90 (rightward)
36 (upward)
96 (leftward)

Hz

11

Bar

78
68
57
67
56
46
35
45
34
24
23
13

Reaction
Vertical at I
Horizontal at I
Vertical at 2
Horizontal at 2

24

45

35

34 3 V,

Scole: 1/2in. SMJoll

FIG. 8. Maxwell diagram for truss A.

The signs of these bar forces must be compared to those assumed for the Williot diagram
in Fig. 7, from which the inertia forces were derived. If there should be a contradiction,
the Williot diagram must be reconstructed with the appropriate changes in sign. No change
was required here.

The truss in Fig. 9 supports equal concentrated masses M at the joints 4, 7, and 9, and
is subjected to the load P cos rot applied at joint 9. Again the masses ofthe bars are assumed
to be negligible in comparison to the lumped masses M. The optimality condition (5.10)
requires that all bars experience a unit extension of the same absolute value e.

After the signs of the bar forces have been assumed as shown in Fig. 9, the Williot
diagram in Fig. 10 is constructed. The joint displacements in multiples of eh are found to
be the following:



Optimal structural design for given dynamic deflection

Components

487

/ 2

Joint

I
2
3
4
5
6
7
8
9

+ 5

3

Rightward
horizontal

o
o

-I
o
I

-2
o
2
o

+ 8

6

Downward
vertical

o
o
3
2
3
7
6
7

II

T
h

9 t
h

J
I--h

FIG. 9. Truss B.
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FIG. 10. Williot diagram for truss B.
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Again, assuming the magnitude of the load P cos wt to be 4Mwzsh, the bar forces and
support reactions are found by using the Maxwell diagram in Fig. 11. The forces and
reactions in multiples of Mwzsh are:

,I·----.-.-~.IH,
13

Bar Axial force

69 -10'6
89 10·6
78 -7,5
58 7·5
36 -7,5
67 7·5
37 -15,9
57 15·9
45 -10,5
25 18·0
13 -18'0
34 10-5
14 -16·3
24 16·3

Reaction Magnitude
Vertical at I 11·5 (upward)
Horizontal at I 29·5 (rightward)
Vertical at 2 11·5 (upward)
Horizontal at 2 29·5 (leftward)

H.
M..,:v.

M..,a 24 Va

VI
nc
ii',
N

5'.
~
I:;..
or

14 V,

FIG. II. Maxwell diagram for truss B.

Again, the signs of the bar forces assumed for the Williot diagram proved to be correct.
The principle of virtual work can be used to calculate the total volume of material

used in the truss. The principle of virtual work for a truss states that

W =-Zl"" FoX· =" (P.+wzM.u.). u·~~ IJ IJ ~ -I I-I -I'

iii

(5.11)
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where W is the work done by the applied forces f; cos wt and the inertia forces MW2!li'
and Fij is the magnitude ofthe axial force in the bar connecting joints i andj. We also know
that

(5.12)

and

From (5.11), (5.12), and (5.13) we obtain

V = Wj(£e2) = I (fi+w2Mi!lJ. !l;/(£e2)
i

(5.13)

(5.14)

where V is the volume of material used in the truss. The weight of the truss is proportional
to V. Hence the weight of each of the two considered trusses can be calculated.

The total weight of truss A is

(5.15)

where p is the density of the material from which the truss is constructed and Tis the weight
of the truss. The total weight of truss B is

(5.16)

Note the considerable saving of weight possible by the different layout of the bars in the
truss. When the layout is not prescribed, the minimum-weight is obtained with a Michell
truss [12].
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AficTpaKT-Pa60Ta JaHIIMaeTCli OnTIIMaJIbHOM npoeKTllpOBaHHeM KOHCTPYK~IIHpa3HbiX TllnOB, BCJIeACTBlle

B036YlKAeHIIlI K rapMOHlI'lecKIIM B1I6pa~HlIM 'Iepe3 OAHHapHblH rpy3, npll lIHTeHCHBHOCTII 113MeHlIlOll\elicli

rapMOHH'IeCKH DO BpeMeHII. AMnJIHTYAa 1I '1aCTOTa :noli HarpY3KH OnpeAeJIlilOTCli KaK "AHHaMII'IeCKali

peaK~HlI" KOHCTpYK~HH. Ha3BaHHa BllpTyaJIbHOH pa60TOli aMnJIHTYAbl HarPY3KII Ha nepeMell\ellll1l

aMfiJlHTYAbl B TO'lKe ee nplIMeHellHlI. npeAMeTOM "npHHYlKAeHlIlI npOeKTllpOBaHlIlI" KOHCTPYK~II11

lIBJIlieTCli IICnOJIb30BaHlle HaKMeHbWerO B03MOlKHOrO KOJIII'IeCTBa KOHCTPYK~IIOHHOrO MaTepllaJIa.

npIIBOAliTCli Heo6xOAIIMbie II AOCTaTO'lHble yCJIOBIIlI OnTIIMaJIII3a~1I1I)lJIli CTeplKHeH II 6aJIOK, C nonepe'lHbl­

Mil Ce'leHIIlIMII, 1I3MeHlIIOIl\IIMIICli HenpepllBHO lIJIII KYCO'lHO nOCTOllHHblMII Olpe3KaMII, a TaKlKe AJIli

c\JepM, fAe Bce MaCCbl paCnOJIOlKeHbl B TO'lKaX CB1I311. LJ:alOTcli npllMcpbI, IIJIJIIOCTPllpYIOWlle B03MOlKHoe

YMeHhweHlle aeca KOHCTPYK~III1.


